
Complexity and P = NP (170 Preview)
Lecture 39

1

CS61B, Spring 2024 @ UC Berkeley
Peyrin Kao and Justin Yokota

Lecture 39, CS61B, Spring 2024

Warmup: Reductions Practice
Deterministic Turing Machine vs
Nondeterministic Turing Machine
Problems in NP
NP-Complete Problems
P=NP

Warmup:
Reductions
Practice

The Knapsack Problem

You are a thief, and are planning a heist on a museum. The museum has a large
number of items, of various weights and monetary values. Your goal is to steal the
set of items with the most total value. However, you can only carry up to 10
pounds worth of stuff in your knapsack (and cannot make multiple trips). What
items do you steal?

Your knapsack can store up to 10 lbs of material.
Which items do you steal?

Knapsack Problem: Example

Item Weight (lbs) Value ($)

Stamp 1 10,000,000

Crown 3 20,000,000

Painting 5 10,000,000

Diamond 2 1,000,000

Pebble 1 1

Your knapsack can store up to 10 lbs of material.
Which items do you steal?

Stamp + Crown + Painting + Pebble:
Weight = 1+3+5+1 <= 10 lbs
Value = 10M+20M+10M+1 = $40,000,001

Knapsack Problem: Example

Item Weight (lbs) Value ($)

Stamp 1 10,000,000

Crown 3 20,000,000

Painting 5 10,000,000

Diamond 2 1,000,000

Pebble 1 1

The Knapsack Problem

The knapsack problem can actually be described
as 3 different problems:
1. Given a list of items and a weight limit, return

the list of items you should steal (ex. Items,
10 -> [Stamp, Crown, Diamond, Pebble])

2. Given a list of items and a weight limit, return
the most value of items you could steal (ex.
Items, 10 -> 40,000,001)

3. Given a list of items, a weight limit, and a
target value, return True if you can steal that
amount of stuff or more, and False if you can't
(ex. Items, 10, 40000001 -> True;
Items, 10, 40000002 -> False)

Item Weight (lbs) Value ($)

Stamp 1 10,000,000

Crown 3 20,000,000

Painting 5 10,000,000

Diamond 2 1,000,000

Pebble 1 1

Stamp + Crown + Painting +
Pebble:
Weight = 1+3+5+1 <= 10 lbs
Value = 10M+20M+10M+1
= $40,000,001

The Knapsack Problem

The knapsack problem can actually be described
as 3 different problems:
1. Return the list of items you should steal
2. Return the most value you could steal
3. Return if you can steal at least a target value

Let's show that these problems are equivalent via
reductions.
● That is, if we had an oracle that could solve

problem 1 in constant time, we could write an
algorithm to solve problem 2 in polynomial
time, and vice versa

1

2 3

Knapsack: Solving 3 given an oracle to 2

3. Return if you can steal at least a target value
2. Return the most value you could steal

Ask the oracle the most value you could steal
If that amount is greater than or equal to the target, return True. Otherwise return
False.

1

2 3

Knapsack: Solving 2 given an oracle to 1

2. Return the most value you could steal
1. Return the list of items you should steal 1

2 3

Knapsack: Solving 2 given an oracle to 1

2. Return the most value you could steal
1. Return the list of items you should steal

Ask the oracle for the list of items to steal
Return the sum of the values of the items

1

2 3

Knapsack: Solving 3 given an oracle to 1

3. Return if you can steal at least a target value
1. Return the list of items you should steal

Make a solver to 2 that uses the solver to 1
Then make a solver to 3 using the solver to 2

1

2 3

Knapsack: Solving 1 given an oracle to 2

2. Return the most value you could steal
1. Return the list of items you should steal

(The trickiest one of the set)
Call the oracle on the original list of items, let that value be K
For each item: (Θ(Ν) total work)

Remove that item from the list, then call the oracle on the new list.
If the oracle returns K, then we can remove the item from the list permanently
If the oracle returns less than K, add the item back to the list

Return the remaining list of items.

1

2 3

Knapsack: Solving 2 given an oracle to 3

2. Return the most value you could steal
3. Return if you can steal at least a target value 1

2 3

Knapsack: Solving 2 given an oracle to 3

2. Return the most value you could steal
3. Return if you can steal at least a target value

Binary Search:
Compute V, the total value of the items
Ask the oracle if you can steal V/2 value
If yes, try 3V/4. If not, try V/4.
Continue until you narrow down the max value.
Max runtime: Θ(log(V))

1

2 3

Knapsack: Solving 1 given an oracle to 3

1. Return the list of items you should steal
3. Return if you can steal at least a target value

Make a solver to 2 using 3
Then make a solver to 1 using 2

1

2 3

The Knapsack Problem

1. Return the list of items you should steal
2. Return the most value you could steal
3. Return if you can steal at least a target value

If we have a solution to any one of these three problems, we can create a solution to
the other two. Thus, we can consider these three problems to be equivalent under
Turing Reduction.

1

2 3

Decision Problems

1. Return the list of items you should steal: Returns a List
2. Return the most value you could steal: Returns an integer
3. Return if you can steal at least a target value: Returns a boolean
The versions of the Knapsack problem all returned different types.
1's return value contains the most information, while 3 returns the least. In fact, #3
returns the least possible information of any nontrivial function (a True/False answer)

We will call functions that return T/F decision problems. For the rest of this lecture,
we'll consider computers that are designed to solve decision problems only.

But in general, we can find a reduction from a function problem (ex. What should I
steal) to a decision problem (ex. Can you steal at least this much?)

Lecture 39, CS61B, Spring 2024

Warmup: Reductions Practice
Deterministic Turing Machine vs
Nondeterministic Turing Machine
Problems in NP
NP-Complete Problems
P=NP

Deterministic
Turing Machine vs
Nondeterministic
Turing Machine

Turing Machines

Formally, any decision problem in theoretical CS is said to run on a Turing Machine,
which represents a model of universal computation; anything that can be solved by a
computer program can also be solved by a Turing Machine.
● Incidentally, when we talk about the time and space complexity of a Java

program, the formal definition actually uses the equivalent Turing machine for
precise definitions of "one unit of time" and "one unit of memory"

One major difference between a
Java/Python program and a Turing
machine is that the Turing machine has
infinite memory
● This is why we can increase input

size arbitrarily large when doing
asymptotic analysis; won't run into
practical bounds

Turing Machines

A programming language is said to be Turing-Complete if any Turing machine can be
simulated with a program written in that language.
● In other words, that language can also compute anything that can be computed

Most programming languages in common use are Turing-Complete (ex. Python, Java,
C, C++, Javascript, etc.)
But there are also some "languages" that are Turing-Complete by complete chance,
like Minecraft's redstone.
● People have created

computers out of redstone,
and this is only possible
because redstone is Turing
Complete.

Deterministic Turing Machines

Because the two are equal, we can informally think of a Turing machine as just any
function we could write in Java (or whatever programming language you want) that
returns only a bool (we need to restrict to decision problems).
We will call this a deterministic Turing Machine (A Turing machine with no
randomness involved), or a DTM.
Further, we will define the set P as the set of all decision problems that can be solved
with a deterministic Turing Machine in polynomial time.
Examples of problems in P:
Is this array of length N sorted?
Does there exist a spanning tree of this graph (with N nodes) smaller than X weight?
Is this number (that's N bits long) prime? (Solved in 2002!!!)

Nondeterministic Turing Machines

A Nondeterministic Turing Machine or NTM is a Turing Machine with one additional
operation that can be performed: guessing.
Informally, we allow an operation int guess(int min, int max) that returns a
number between min and max.
If ANY pattern of guesses ends up causing us to return True, then the
nondeterministic Turing Machine returns True.
If ALL guess patterns return False, then the nondeterministic Turing Machine returns
False.
The set NP is the set of problems that can be solved in polynomial time with a NTM

Lecture 39, CS61B, Spring 2024

Warmup: Reductions Practice
Deterministic Turing Machine vs
Nondeterministic Turing Machine
Problems in NP
NP-Complete Problems
P=NP

Problems in NP

The problem of Sudoku

A sudoku is a logic puzzle like the one on
the right
The goal is to write the numbers 1-9 in
each cell such that:
● Each row has the numbers 1-9
● Each column has the numbers 1-9
● Each 3x3 cell has the numbers 1-9

Decision problem version: Given a
partially filled grid like the one to the right,
does at least one solution exist?

3 1 7

6 4 8 3 2

2 6 4 1 9

8 9 4

1 6 4 9 2

7 3

3 8 5 7 9 6 2

8 1

1 5

Solving Sudoku with a NTM

Here's how a NTM might solve Sudoku:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

Step 1 creates 947 distinct "universes". If
even one of these universes returns True
in step 2, the NTM will return True. If all
the universes return False, the NTM will
return False.

3 1 7

6 4 8 3 2

2 6 4 1 9

8 9 4

1 6 4 9 2

7 3

3 8 5 7 9 6 2

8 1

1 5

Solving Sudoku with a NTM

Universe 1: All 1s
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

This universe returns False

1 3 1 7 1 1 1 1 1

6 4 1 8 3 1 1 2 1

2 1 1 6 4 1 1 1 9

8 1 1 1 1 1 1 9 4

1 6 4 1 1 9 2 1 1

1 1 7 1 1 1 1 3 1

3 8 5 1 1 7 9 6 2

1 1 1 1 1 1 1 8 1

1 1 1 1 1 1 1 5 1

Solving Sudoku with a NTM

Universe 2:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

This universe returns False

1 3 1 7 1 1 1 1 1

6 4 1 8 3 1 1 2 1

2 1 1 6 4 1 1 1 9

8 1 1 1 1 1 1 9 4

1 6 4 1 1 9 2 1 1

1 1 7 1 1 1 1 3 1

3 8 5 1 1 7 9 6 2

1 1 1 1 1 1 1 8 1

1 1 1 1 1 1 1 5 2

Solving Sudoku with a NTM

Universe 3:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

This universe returns False

1 3 1 7 1 1 1 1 1

6 4 1 8 3 1 1 2 1

2 1 1 6 4 1 1 1 9

8 1 1 1 1 1 1 9 4

1 6 4 1 1 9 2 1 1

1 1 7 1 1 1 1 3 1

3 8 5 1 1 7 9 6 2

1 1 1 1 1 1 1 8 1

1 1 1 1 1 1 1 5 3

Solving Sudoku with a NTM

Universe
385585354550914402442800888282404
424608060642:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

What does this universe return?

5 3 1 7 9 2 6 4 8

6 4 9 8 3 1 5 2 7

2 7 8 6 4 5 3 1 9

8 5 3 2 7 6 1 9 4

1 6 4 3 8 9 2 7 5

9 2 7 1 5 4 8 3 6

3 8 5 4 1 7 9 6 2

7 9 6 5 2 3 4 8 1

4 1 2 9 6 8 7 5 2

Solving Sudoku with a NTM

Universe
385585354550914402442800888282404
424608060642:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

This universe returns False

5 3 1 7 9 2 6 4 8

6 4 9 8 3 1 5 2 7

2 7 8 6 4 5 3 1 9

8 5 3 2 7 6 1 9 4

1 6 4 3 8 9 2 7 5

9 2 7 1 5 4 8 3 6

3 8 5 4 1 7 9 6 2

7 9 6 5 2 3 4 8 1

4 1 2 9 6 8 7 5 2

Solving Sudoku with a NTM

Universe
385585354550914402442800888282404
424608060643:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

What does this universe return?

5 3 1 7 9 2 6 4 8

6 4 9 8 3 1 5 2 7

2 7 8 6 4 5 3 1 9

8 5 3 2 7 6 1 9 4

1 6 4 3 8 9 2 7 5

9 2 7 1 5 4 8 3 6

3 8 5 4 1 7 9 6 2

7 9 6 5 2 3 4 8 1

4 1 2 9 6 8 7 5 3

Solving Sudoku with a NTM

Universe
385585354550914402442800888282404
424608060643:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

This universe returns True!

5 3 1 7 9 2 6 4 8

6 4 9 8 3 1 5 2 7

2 7 8 6 4 5 3 1 9

8 5 3 2 7 6 1 9 4

1 6 4 3 8 9 2 7 5

9 2 7 1 5 4 8 3 6

3 8 5 4 1 7 9 6 2

7 9 6 5 2 3 4 8 1

4 1 2 9 6 8 7 5 3

Solving Sudoku with a NTM

Universe
706965049015104706497203195837614
914543357369:
Step 1:
For each of the 47 blank cells, make a
guess as to the right value in each cell
Step 2:
Check if all the conditions of a valid
Sudoku solution holds. If they hold, return
True. If not, return False.

This universe returns False

9 3 1 7 9 9 9 9 9

6 4 9 8 3 9 9 2 9

2 9 9 6 4 9 9 1 9

8 5 9 9 9 9 9 9 4

1 6 4 9 9 9 2 9 9

9 2 7 9 9 9 9 3 9

3 8 5 9 9 7 9 6 2

9 9 9 9 9 9 9 8 1

9 1 9 9 9 9 9 5 9

Solving Sudoku with a NTM

In universe
385585354550914402442800888282404
424608060643, we returned True, so our
NTM would return True.
What's the runtime (when run on
generalized Sudoku of size n2 by n2)?
(Note that because we are running a
NTM, all the universes happened
simultaneously; our runtime is the
universe that took the most time to return
True or False)

3 1 7

6 4 8 3 2

2 6 4 1 9

8 9 4

1 6 4 9 2

7 3

3 8 5 7 9 6 2

8 1

1 5

Showing that Sudoku is in NP

In universe
385585354550914402442800888282404
424608060643, we returned True, so our
NTM would return True.
What's the runtime (when run on
generalized Sudoku of size n2 by n2)?
It takes Θ(n4) time to do step 1 (one step
per square)
You can check if a set of n2 items contain
all the numbers 1 to n2 in Θ(n2) using a
set. We do this 3n2 times (once for each
row, column, and cell), so it takes Θ(n4)
time to do step 2
Therefore, the total runtime is Θ(n4), and
Sudoku is in NP.

3 1 7

6 4 8 3 2

2 6 4 1 9

8 9 4

1 6 4 9 2

7 3

3 8 5 7 9 6 2

8 1

1 5

Is Knapsack 3 in NP?
3. Given a list of N items, a weight limit, and a
target value, return True if you can steal that
amount of stuff or more, and False if you can't
(ex. Items, 10, 40000001 -> True;
Items, 10, 40000002 -> False)

Is the Knapsack Problem in NP?

Item Weight (lbs) Value ($)

Stamp 1 10,000,000

Crown 3 20,000,000

Painting 5 10,000,000

Diamond 2 1,000,000

Pebble 1 1

Is Knapsack 3 in NP?
3. Given a list of N items, a weight limit, and a
target value, return True if you can steal that
amount of stuff or more, and False if you can't
(ex. Items, 10, 40000001 -> True;
Items, 10, 40000002 -> False)

Yes! Strategy:
Step 1: Guess a set of items to steal (creates 2N universes)
Step 2: Verify that the set solves the problem: If that set of items has less weight
than our weight limit (takes Θ(Ν) time to compute) and the total value is greater
than the target (takes Θ(Ν) time to compute), return True. Otherwise, return False.

Is the Knapsack Problem in NP?

Item Weight (lbs) Value ($)

Stamp 1 10,000,000

Crown 3 20,000,000

Painting 5 10,000,000

Diamond 2 1,000,000

Pebble 1 1

In general, solving a problem with a NTM boils down to those two steps:
1. Generate (nondeterministically) a random solution to the problem
2. Verify (deterministically) if that solution actually solves the problem
Nontrivial fact: Any problem that can be solved by an NTM can also be solved in
the above procedure (with the same runtime)
● Short justification: Can "move" all the guesses to the start of the program and

save those guess values in memory somewhere
Because of this, NP is also defined as the set of problems whose solution can be
verified in polynomial time by a DTM
● Given a proposed solution, can you check if that solution actually solves the

problem efficiently?
Contrast to P, which is the set of problems whose solutions can be generated in
polynomial time

NP == Polynomial-Time Verifiable

Here are a few examples of problems in NP (after turning them into their
respective decision problem):
● Any problem in P
● Knapsack
● Sudoku
● Most logic puzzles (Kenken, Minesweeper, Tetris, Rubik's Cube)
● Longest Path (Given a graph, find the longest path that doesn't reuse edges)
● Independent Set (Given a graph, find the largest set of vertices that have no

adjacencies)
● Prime Factorization
● Encryption (Decrypt an encrypted bitstream)
● Compression (Optimally compress a bitstream, such that it can be

uncompressed in polynomial time)

More NP problems

Here are a few examples of decision problems not currently known to be in NP:
● Chess (Given a chess position, determine which side is winning, or if it's a

draw assuming perfect play)
● Many other games, including Go
● Given a program and input, does the program terminate? (Halting Problem,

known to be undecidable)
● Compression without an upper limit on runtime (reduces to the Halting

Problem)

Problems NOT in NP

Lecture 39, CS61B, Spring 2024

Warmup: Reductions Practice
Deterministic Turing Machine vs
Nondeterministic Turing Machine
Problems in NP
NP-Complete Problems
P=NP

NP-Complete
Problems

Earlier, we showed that 3 versions of the Knapsack problem
were equivalent under Turing reductions.
If A reduced to B and B reduced to C, then A can always
reduce to C.
Intuitively: if A reduces to B, then B is "at least as hard"
as A to solve. If B is harder than A and C is harder than
B, then C is harder than A.
In general, it's not true that if A reduces to B, then B
reduces to A.
Ex. All problems reduce to the SOLVE decision problem, which receives as input a
decision problem and an input, and returns whether the decision problem would
return True or False on that input.
We will call a problem NP-Hard if every problem in NP reduces to that problem (or
in other words, that problem is at least as hard as every problem in NP)

NP Hardness

1

2 3

The SAT problem is defined as follows: You're given a function of boolean
variables (ex. "x && y", "x && (!x)"). Is it possible to assign values to all the
variables, such that the boolean expression evaluates to True?
Ex. "x && y" can return True if we set x = True, y = True. So SAT should return
True.
Ex. "x && (!x)" can never return True; both x = True and x = False yield False
overall. So SAT should return False.

SAT is in NP (guess an assignment of all variables and see if it returns True)

The Satisfiability Question (SAT)

Totally Shocking Fact

SAT is NP-Hard

In other words, any decision problem that can be solved by a NTM can be
transformed into a SAT problem in polynomial time.

In addition, SAT is in NP. We call a problem that's both in NP and NP-Hard an
NP-Complete problem. Any NP-Complete problem is the hardest problem in NP.

This result is by Cook (1971) and Levin (1973). See Cook-Levin Theorem for more.

http://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem

The Reductions Graph

SAT

Knapsack

Prime

Shortest
PathSortedMSTPrime

Factorization

Graph
Coloring

Independent
Set

Longest
Path Sudoku

Green problems are in PPink problems are NP-complete

Even More Shocking Fact

Amazingly, SAT also can reduce to other problems in NP:
SAT reduces to 3-SAT (SAT with some restriction on the boolean formula)
SAT reduces to Independent Set
3-SAT reduces to Graph Coloring
Graph Coloring reduces to Exact Cover
Exact Cover reduces to Knapsack
Independent Set reduces to Vertex Cover reduces to Hamilton Circuit reduces to
Longest Path
A complex sequence of problems shows that 3-SAT reduces to Sudoku
Prime Factorization is NOT currently known to be NP-complete.

The Reductions Graph

SAT

Knapsack

Prime

Shortest
PathSortedMSTPrime

Factorization

Graph
Coloring

Independent
Set

Longest
Path Sudoku

Green problems are in PPink problems are NP-complete

The set of NP-Complete problems

Because of this, any two NP-Complete problems are equivalent under Turing
reduction.
● In other words, the Knapsack problem is actually the same as solving a

Sudoku!
There are tens of thousands of problems now known to be NP-Complete; many of
these problems were independently discovered in completely different fields, well
before a proof of NP-Completeness was discovered.
If even one of these problems has a reduction to a problem in P (or a polynomial
time solution was discovered for it), then every other NP problem will also be
solved in polynomial time.
At this point, no one has found a polynomial-time reduction of any of these
problems, but no one has proven that no such reduction exists.
This is the P=NP problem: Find a Turing reduction from an NP problem to P (P =
NP), or prove that no reduction exists (P != NP).

Lecture 39, CS61B, Spring 2024

Warmup: Reductions Practice
Deterministic Turing Machine vs
Nondeterministic Turing Machine
Problems in NP
NP-Complete Problems
P=NP

P = NP?

P = NP?

Consensus Opinion (Bill Gasarch Poll, 2019 poll)
● 89%: P ≠ NP (109 respondents)
● 11%: P = NP (15 respondents)
● ~3% mentioned in comments an alternative: P = NP is provably impossible to

prove OR disprove

Why is opinion generally negative?
● Someone would have proved it by now.

○ “The only supporting arguments I can offer are the failure of all efforts to
place specific NP-complete problems in P by constructing
polynomial-time algorithms.” - Dick Karp

● Creation of a correct solution seems philosophically more difficult than
verifying a solution.

P = NP?

Consensus Opinion (Bill Gasarch Poll, 2019 poll)
● 89%: P ≠ NP (109 respondents)
● 11%: P = NP (15 respondents)
● ~3% mentioned in comments an alternative: P = NP is provably impossible to

prove OR disprove

Why do some people think P=NP is still possible?
● NP is surprisingly close to P.

○ We have algorithms that solve the Knapsack problem in polynomial time:
■ If N is defined as the total weight of the items, instead of the number of

items
● But only if the weights and values of items are integers, not rational

numbers
■ If we want to find a solution within x% of optimal, for any x>0

○ Modern SAT solvers work in polynomial time in almost all randomly generated
cases, and only exhibit exponential time in cases tailor-made to the algorithm

What happens if you prove P=NP?

If P = NP is proven (even if we find an algorithm that takes Θ(n1000000)) time:
● Every problem in NP collapses into P
● All modern cryptography breaks
● A fundamental assumption made by 89% of CS theorists is broken, and

further improvements are likely
If P != NP is proven:
● An entire new branch of theory will likely be developed off those methods

○ There are currently a LOT of unsolved problems in complexity hierarchy
● Despite hundreds of people working on this problem, there's been basically no

progress on solving this in the past decade

The Millenium Problems

In 2000, the Clay Mathematics Institute set up $1,000,000 prizes for the solution
(proof, disproof, or proof of independence from ZFC) of each of seven problems.

Millenium Prize Problems.
● Hodge conjecture
● Poincare conjecture (solved in 2002!)
● Riemann hypothesis
● Yang-Mills existence and mass gap
● Navier-Stokes existence and smoothness
● Birch and Swinnerton-dyer conjecture
● P=NP

http://en.wikipedia.org/wiki/Millennium_Prize_Problems

Just because a problem hasn't been solved doesn't mean you can't find a solution

Despite all I've said, you shouldn't be discouraged
from finding a solution. Amateur theorists find
massive breakthroughs in CS and math surprisingly
often.
Example: Some fans of the anime "The Melancholy
of Haruhi Suzumiya" ended up solving a major
unsolved problem while trying to determine how
many ways they could watch the series. The proof
was written on 4chan in 2011, discovered by a
mathematician in 2018, and published in 2021.
Sometimes, the best way to do CS is to just play
around with stuff and see what happens.

Just because a problem hasn't been solved doesn't mean you can't find a solution

